湖南行測(cè)數(shù)量關(guān)系,透析幾何方位角問(wèn)題
湖南公務(wù)員考試行測(cè)數(shù)量關(guān)系考點(diǎn)累積
近幾年來(lái),在行測(cè)數(shù)量關(guān)系的考查中,有一種幾何問(wèn)題出現(xiàn)的頻率穩(wěn)步上升,其題干特點(diǎn)主要體現(xiàn)在:出現(xiàn)“東、南、西、北”并結(jié)合角度的方位描述,因需結(jié)合方位角度畫(huà)圖,讓人無(wú)從下手,但是只要按照題中方向和角度畫(huà)出圖形,按照既定步驟便可求解。
數(shù)量關(guān)系例題講解
步驟一:結(jié)合方位畫(huà)出幾何圖形;
步驟二:結(jié)合圖形中的方位角確定或構(gòu)建直角三角形;
步驟三:把所求線段放在直角三角形中,并解直角三角形。
例題、一艘軍艦以每小時(shí)20km的速度向東行駛,行駛A時(shí)看到一個(gè)燈塔C在北偏東60°處,軍艦繼續(xù)以原速向正東方向行駛,3小時(shí)后,到達(dá)B處,瞭望燈塔C,發(fā)現(xiàn)燈塔C在北偏東15°處,則此時(shí)軍艦與燈塔的高距離為( )km。
A.30
B.30√2
C.30√3
D.45√2
【答案】B。
解析:步驟一:結(jié)合題干描述方位畫(huà)圖如下:
軍艦最終行駛至B點(diǎn),∠EAC=60°,∠CBF=15°,此題所求為軍艦行至B處時(shí)與燈塔C的距離,即為BC。
步驟二:確定直角三角形,本題中無(wú)直角三角形,需構(gòu)建直角三角形,作BG⊥AC,則△AGB、△BGC均為直角三角形。
步驟三:解直角三角形。
在Rt△AGB中,∠GAB=90°-∠EAC=30°,AB=20×3=60km,BG=AB÷2=30km,在△ABC中,∠C=180°-∠CAB-∠ABC=180°-30°-(90°+15°)=45°,則在Rt△BGC中,BC=√2BG=30√2,故本題選擇B項(xiàng)。
幾何方向角問(wèn)題,牢記三步驟:一畫(huà),二直,三解;謹(jǐn)記順口溜:方位畫(huà)圖是關(guān)鍵,構(gòu)造直角當(dāng)為先,特殊角度當(dāng)用巧,線條長(zhǎng)度馬上現(xiàn)。
更多數(shù)量關(guān)系技巧與方法掃碼獲取
技巧還沒(méi)掌握?掃碼回復(fù)“咨詢老師”
點(diǎn)擊分享此信息:
相關(guān)文章